Permalink 04:21:39 pm, by Olliebrown Email , 126 words, 5820 views   English (US)
Categories: GSoC 2009, Code Progress

Gentlemen, to evil

I think we've got it. I did some playing around with the different sampling parameters and after some scaling and few bug fixes to make sure the energy stayed consistent no matter the number of photons and now we're getting some good results. Here's the latest light map for the Cornell Box:

Raw lightmaps for the Cornell Box (1M photons, 1000 samples)
This light map contains only photon mapped light. It was generated with 1M photons and 1000 samples per element. While the image is still too noisy we are seeing all the desirable lighting effects and the overall impression is much closer to the desired result.

Here's a table of many different photon counts (y axis) and sampling amounts (x axis) (click on any image for a full size view):

1K 1K photons, 10 samples per element 1K photons, 100 samples per element
10K 10K photons, 10 samples per element 10K photons, 100 samples per element 10K photons, 1K samples per element
100K 100K photons, 10 samples per element 100K photons, 100 samples per element 100K photons, 1K samples per element
1M 1M photons, 10 samples per element 1M photons, 100 samples per element 1M photons, 1K samples per element


Permalink 09:10:35 pm, by Olliebrown Email , 343 words, 926 views   English (US)
Categories: GSoC 2009

Speedup & Progress

The current PhotonMap class was painfully slow when accessing the KD-tree for the purposes of irradiance estimation (the final gathering phase of photon mapping). Upon further inspection I found that the tree was implemented as a linked structure instead of the more efficient heap approach and that it was not being balanced. I replaced the PhotonMap with the code from Jensen's book which not only keeps the KD-tree in a heap but balances it before accessing it (in oder to guarantee O(log(n)) performance) and now things are significantly faster. For example, 1M photons used to take over 43 minutes to simulate start to finish (without final gather). Now, this is working in about 30 seconds!

Of course, this could be a fluke, perhaps I have missed something in the new lightmap. However, the results are looking promising:

Lighter2 generated lightmap of cornell box - indirect light only
The latest results of photon mapping. This is the lightmap for the Cornell Box example with indirect light ONLY. Note light no longer leaks under the boxes and the shadows are there, just poorly sampled.

Now, I need to clean up the gathering phase. The simulation looks better than before but now it is too bright and too noisy. Furthermore, I need to enable Final Gather on Jensen's photon map. It does not implement this out-of-the-box.

I want to re-work Jensen's allocation scheme for the heap. At present, it requires a 'maxPhotons' when you initialize the map and this is all the space that gets allocated. Since photon emission is stochastic you can't accurately predict just how many will be emitted before hand, you can only give a maximum upper bound. In practice this upper bound is about 3 times bigger than it needs to be. A data structure than can take an initial guess and resize as needed would be preferable to avoid the initial over-allocation this causes. This may be difficult as not only do Jensen's functions expect pointers to the photons but it expects them to be stored sequentially which I'm not sure an expanding array structure can guarantee (or allow me to access).


Permalink 08:37:02 pm, by Olliebrown Email , 228 words, 2629 views   English (US)
Categories: GSoC 2009

On Second Thought ...

The more at look at the photon map visualizations the more I think that the shadows are there. If I view them from across the room and squint my eyes the density of photons seems to be less in the areas where the shadows from the boxes should be. Furthermore, the whole point of indirect illumination in this scene is to add light to the shadowed parts that direct illumination cannot account for so they shouldn't be as sharp and pronounced as in the direct lighting version.

So, I think it's safe to say that the photon emission phase is okay (or at the very least, it's not the source of the current problems). I went ahead and added some attenuation of the total photon count (now, the power is divided by the total number of photons being emitted) but as a principle of russian roulette you shouldn't decrease the power of bouncing photons so I think I'm going to leave it there.

Given the observation that light is getting under the boxes at the gathering phase I know that this phase needs more work. Furthermore, the kd-tree implementation at this phase is slower than it should be, not to mention the other problems I'm seeing (the really dim results) don't seem to be coming from the emissions phase, I think it's time to turn my attention there.

Permalink 07:37:55 pm, by Olliebrown Email , 425 words, 26227 views   English (US)
Categories: GSoC 2009, Code Progress, Bug Hunting

When in Doubt, Visualize

That should be the mantra of every graphics programmer ... at least, that's what some professor told me one time.

I worked up a direct visualization of the photon emission stage by simply drawing points in space for each photon. I set the color of each point to the power of the photon and now I'm seeing something very important. The power is not attenuating ... AT ALL. That's why we aren't getting any shadows and that's probably why everything is a constant power and too dim.

I thought that I could safely ignore the photon power until milestone 2 but I think I need to deal with it now so that's going to be the current task.

Here's the visualizations:

Directly visualizing the Cornell Box Photon Map
Directly visualizing the Cornell Box Photon Map with 1000 photons emitted total (250 from each light).

Directly visualizing the Cornell Box Photon Map
Directly visualizing the Cornell Box Photon Map with 10,000 photons emitted total (2,500 from each light).

Directly visualizing the Cornell Box Photon Map
Directly visualizing the Cornell Box Photon Map with 100,000 photons emitted total (25,000 from each light).

Directly visualizing the Cornell Box Photon Map
Directly visualizing the Cornell Box Photon Map with 1,000,000 photons emitted total (250,000 from each light).

Note: the number of photons listed is the number of emitted photons. Since photons are recorded each bounce there are actually MANY more being added to the map and drawn. With russian roulette in play, the photons are bouncing about 5 times on average so multiply the number of emitted photons by 6 to get the number being drawn and the number of rays being traced. This is all still happing quite efficiently. The last case has about 6M rays to trace and it does so in only a few minutes. Not bad! Unfortunately, the splatting/final gather phase is painfully slow still. I think it's because the kd-Tree for the photon map is not being properly balanced.

Some Observations about these images:

  • Almost no photons are landing under the boxes (which is as it should be). The ones that appear to be there are actually on the front face of the boxes. I thought this was a problem as there is light appearing in the light map in these areas but it must be getting there in the splatting/gathering phase
  • The photons are VERY uniformly distributed. Again, this is as it should be since we are doing purely diffuse bounces.
  • The shadows are missing. My new theory is that this is because we are not attenuating the power after each bounce
  • Each scene just gets brighter and brighter. This shouldn't happen as the power should be evenly divided between the photons emitted. This is also a problem with the power attenuation.
Permalink 04:35:36 pm, by Olliebrown Email , 378 words, 22436 views   English (US)
Categories: GSoC 2009, Code Progress, Bug Hunting

Status Update

So far, it's been a lot of house cleaning. There's still several key problems with the photon map algorithm that did not resolve themselves as I expected.

The key change was to the photon emitting phase. I added a progress structure to this phase so that we could see when it was happening and how many rays it was creating. More importantly, I changed the photon scattering code to scatter photons diffusely instead of specularly. In the end, we are going to need both but for now, the diffuse scattering is more important and I don't think the specular scattering was being done right anyways. My hope is that by changing to diffuse and by ramping up the number of photons being emitted we would get better results right away. This has not been the case.

There are two key problems in the final light maps that have yet to be resolved:

  1. They are WAY too dim. About a tenth of the brightness we get with the direct lighting version.

  2. There are no shadows. PM should get the shadows if you shoot enough photons and we're shooting millions so they should be there.

While these are not the only problems, these problems are the most troubling ones and ones that I theorized were caused by improper photon scattering.

To proceed, I'm going to finish up the scattering with both diffuse and specular components chosen with statistical russian roulette (exactly as suggested in Jensen's book) and then start working on the splatting / gathering phase of the simulation. The code for this phase comes straight from Jensen's book so mostly I'm just going to confirm that its correct before I start to play with it and debug the implementation.

Here's some visuals for what's going on. These images are the actual lightmaps generated by lighter2. In both cases lmdensity was set to 10.0 so that the images generated would be high enough resolution to examine directly:

Cornell Box lightmap - Direct lighting only
This is the current production state of lighter2. Only direct illumination is simulated which captures shadows well but no global effects.

Cornell Box lightmap - Indirect lighting only
This is the state of the photon mapping implementation after my changes (and with an artificial brightening by 4 throughout). Shadows are missing, flat surfaces are noisy and light is getting into places it shouldn't.


Permalink 09:17:11 pm, by Olliebrown Email , 433 words, 6767 views   English (US)
Categories: GSoC 2009

Baseline / Test Cases

Here are some test cases I'm working with to debug and develop the global illumination changes. They are small tests that display important effects of globally lighting very clearly and have appeared in the literature describing various algorithms for such.

Cornell Box:

The scene for the cornell box already exists in the 'data' directory of the main development branch but the materials describing the different colors are broken. I instead uses a scene of the Cornell Box for Blender. First I generated a ground truth image using the radiosity system in Blender, then I exported the geometry and fixed up the color materials inside the world file to make sure we can achieve the same result in lighter2. Here are some images to show the differences. I will use images of this scene to show progress through each milestone.

Cornell box rendered using the radiosity system in BlenderCornell box rendered using direct lighting only in Lighter2
The Classical Cornell Box: (Top) Goal/Ground Truth image - radiosity simulation for the classical Cornell Box scene generated by the built-in radiosity solver in Blender. (Bottom) lighter2 results for direct illumination (no global illumination at all)


  • Area light has been approximated by point lights
  • Milestone 1: we will look for brightening in the shadow areas
  • Milestone 2: we will look for the color bleeding from the walls to the boxes

Construction in Wood:

One very interesting test case for radiosity is a sculpture in the Hirshhorn Museum in Washington D.C. by John Ferren, entitled "Construction in Wood, A Daylight Experiment". It was discovered by some of the early radiosity researchers (particular credit goes to Cindy Gorn who first modeled the sculptured and presented it in her thesis) and used it to show how important diffuse-to-diffuse light interaction can be. All of the color visible on the viewing side of this sculpture comes from light bouncing off the surfaces on the back of the sculpture diffusely (not specularly). The result is a structure that looks completely white and boring when naïvely ray-traced or directly lit but vibrantly colorful when a global lighting solution is computed. I will also use this scene to evaluate and demonstrate progress on this project.

The Ferren Sculpture rendered with the radiosity simulator in BlenderFerren Sculpture - direct light onlhy
John Ferren Sculpture: (Top) Goal/Ground Truth image - radiosity simulation for the Ferren sculpture generated by the built-in radiosity solver in Blender. (Bottom) lighter2 results with only direct illumination showing almost nothing (except some very nice shadows) as expected.


  • I'm still working on getting the materials in CS for this model. I've let it go for now and will try again later.
  • We will look for the same effects in this example for each milestone but they should be easier to discern


Permalink 08:02:01 pm, by Olliebrown Email , 474 words, 3467 views   English (US)
Categories: GSoC 2009, Code Progress, Planning Progress

Change of Plans

A New Plan
Thanks to all who offered feedback for my previous post. With the discovery of the GSoC '08 branch for lighter2 with photon mapping plans need to change. I've been examining Greg Hoffman's changes to lighter2 to determine what work could be done and I think there's a good chunk here to constitute a project. Here's my assessment of what the branch contains:

  • There's a basic Photon Map data structure and code to emit and gather photons in a single sector.
  • This code does seem to do something but I don't think it's correct in all cases (or at least robust) yet
  • There are things missing (proper handling of materials, diffuse to diffuse light paths)
  • It's missing some options to fine tune the convergence (no max error, max recursion depth, no control over number of photons emitted)
  • Right now it's slow and has room for optimization

So, it seems given the original content of my proposal and this discovery from last summer that the new course of action should be to work on the photon mapping implementation. So, here's a basic outline of what I could do again welcoming comments:

Milestone 1: Repair

  1. Ensure the PM calculation is correct and fix where needed (such as handling LD+SE paths)

  2. Add the missing settings for controlling convergence

  3. Ensure it scales well from small test cases (like the Cornell Box) to large game levels

Milestone 2: Improve Quality

  1. Handle light traveling across portals

  2. Handle all materials properly (materials are ignored right now)

Milestone 3: Improve Speed/Features

  1. Add importance sampling to avoid redundant photon emission

  2. Move calculations to GPU (BIG speedup)

  3. Optional: Add support for 'dielectrics' (refracting materials) and caustics (via reflection and refraction)

Concerning the optional task under Milestone 2, Photon Mapping just handles caustics well (it's famous for it) and as such it would be easy to render this if the information about refraction is available in the material structure (namely index of refraction). It could make for some interesting but very specialized effects.

I'm planning about two weeks for each milestone with an extra week for the first one just for getting out of the starting gate. Here's a rough time-line to completion of these milestones:

  • Milestone 1 (already in progress): Now - July 21st
  • Milestone 2: July 22nd - Aug 4th
  • Milestone 3: Aug 5th - Aug 18th

I want to make sure that the amount of work I'm doing is worthy of a full SoC project regardless of the time frame. I'm definitely slow getting started here and I want to ensure all involved that I will make that up as we go either by putting in extra time now or beyond the scheduled GSoC end. Therefore, I think it is best to make sure I get a project defined that is of a scope appropriate for SoC so that no one feels short changed.


Permalink 08:43:01 pm, by Olliebrown Email , 1219 words, 1845 views   English (US)
Categories: GSoC 2009, Planning Progress

Long overdue ...

We are underway and I am long overdue in posting an entry here so there is much to discuss.

What have I been doing:
Planning! I have been getting very familiar with lighter2 and determining where change would be most appreciated. This has been a slow task as much of lighter2 is un-commented (or at least, the comments are not very detailed). Also, I have had to learn much about the CS app framework, the instance tracking classes used in CS and the i* classes used throughout lighter2. Conceptually, I reached a good place to actually propose some changes to Scott my mentor last week and we met to discuss just that.

What is the current status:
At present, we have identified the following concerns or features that need attention in lighter2 and would pertain to my proposal and my areas of expertise -

  1. lighter2 is an external dependency for any CS app. For redistribution purposes, it would be better if it was internal (either built into the library or as a plugin).

  2. lighter2 uses the 'direct lighting' approach for its central calculation. This works well and is efficient but is below the standard of other game engines which use Radiosity. For example, see this page under the heading 'Dynamic Lighting and Shadows' (http://developer.valvesoftware.com/wiki/Source_Engine_Features).

  3. While lighter2 is a single run, non-interactive component efficiency is still quite important. This is because during development of a game, static lighting needs to be recalculated every time the world is changed. This can be tedious if it takes more than a minute or two to give a result(and seconds would be even better).

  4. Conceptually, any light-mapping application can be thought of as a bootstrap. The rendering system will use the light maps to render the world but the light-mapping application needs a rendering system (or at least part of one) to construct the light maps. Therefore, lighter2 naturally depends on some components of the CS library (mostly viewing and projection calculations and geometry loading components).

    Some of the conceptual components of lighter2 (like the 'scene' and 'segment' classes) should be part of the CS library. I have not examined the library itself too deeply to see if it provides these components but Scott suggested that they are in fact copies of classes from the library. This is conceptually undesirable but there may be reasons for it. More discussion of this is in order.

  5. At the heart of the 'direct lighting' approach is a BRDF approximation used to calculate how much ambient/diffuse illumination each surface gives off for each light source. I have not yet identified where this calculation takes place but I'm operating on the assumption that this calculation is being done somewhere and is using a very simple BRDF model like the Blinn-Phong model.

What conclusions can be drawn:
From all of this I've identified some requirements for this project -

  1. New code should be easy to integrate (or already be integrated) into the CS library.

  2. The current 'lighter2' work flow (which will probably be more efficient than any new work flow) should be retained as a fallback for when quick calculations are important. This includes both the 'direct lighting' algorithm and the current BRDF model.

  3. We should consider re-writing lighter as a plugin. This is secondary to the main proposal objectives but if we are making enough changes to lighter this may happen anyways as a side-effect or as an add on at the end if there is extra time.

So what are the plans:
I'm going to start moving forward with changes now. Here's the initial proposal of work in the order it will be undertaken (this may change in a typical design-build fasion) -

  1. The direct lighting BRDF model will be upgraded to the Oren-Nayer model. This should be very easy and will satisfy part of the original proposal. If nothing else gets completed on this project at least this will be in place. It will also serve as a way to finish examining the details of lighter2 that will be more productive than just reading the source. Note that we may need to convert the Blinn-Phong parameters to Oren-Nayer parameters so that material properties do not need to be redesigned for every existing world to take advantage of this improved model.

  2. The Radiosity algorithm will be implemented as a CS plugin. I have implemented Radiosity before and believe this can be done relatively quickly given the tools that CS already has built-in. Implementing it as a plugin will make it available for use in lighter2 or even as its own internal step in the standard CS rendering pipeline. Here's a breakdown of how this will be undertaken -

    1. The most efficient approach to Radiosity that I know of is the hemi-cube method. This fits well in any scanline rendering system that can render-to-texture. We will start by developing a CS app that renders the scene from the point of view of the light sources to a texture map. This will then be integrated into a bigger radiosity plugin.

    2. In the radiosity algorithm all surface patches can be light sources. To avoid the need to supply seperate lights just for the radiosity system, existing light sources will have to be approximated with proxy geometry and special work may be required to support spot-lights and other non-area light sources. Point light source will need to be approximated with very small area light sources.

    3. The hemi-cube textures are used to compute form factors and fill in a large matrix that describes which surfaces can see what parts of which other surfaces. This is a straight-forward calculation.

    4. With the form factors calculated we need a large linear system solver that computes the equilibrium achieved by this world. This will initially be a standard Gauss-Seidel solver and can be upgraded to something fine-tuned to the radiosity problem at a later time.

    5. The solved system must be written back to the geometry by placing the computed colors into the mesh vertices which normally requires some type of interpolation. From here, we could further propagate this data out into textures which would then become the light maps for the scene.

At this point we will reevaluate and decide what is to be done next. Additional project tasks may include:

  • Improving radiosity with things like: a better linear system solver, automatic geometry or light map subdivision at high-frequency artifacts and support for more types of light sources.
  • Re-working of lighter2 as an internal dependency (see above)
  • Other changes to lighter2 to bring it up to speed with the CS library and make it more maintainable into the future.

What's described here will constitute the bulk of this project and work will begin immediately. I intend to reevaluate progress as I go and learn more about CS and lighter2. All comments are welcome and encouraged as there are a plethora of assumptions underlying these ideas and any number of them could prove to be wrong. The collective knowledge of the CS community can do far better to identify these problems than I can digging through the mountains of code and documentation. My time is better served now making changes rather than fact-checking!

Thanks to all for reading this! I will post more as I go.



Permalink 09:42:45 pm, by Olliebrown Email , 157 words, 2384 views   English (US)
Categories: GSoC 2009, Personal

Community Bondage

Just a quick greeting to all those out there in CrystalSpace. I'm thrilled to be a part of the GSoC and CS and look forward to contributing something worthwhile. Thanks all around to the mentors and admins on CS for selecting my proposal. Scott and I have already chatted about the future of this project and will take up full planning once the school semester closes in a couple of weeks.

For those that don't know me yet, I'm a doctoral candidate in my sixth year of graduate study at the University of Minnesota. Computer graphics is my primary area of interest and most of my programming experience involves real-time lighting and shading to some degree. These days I'm working on image based rendering recreating work on light fields with the hope of applying it to a new area.

I will do my best to keep things up to date on this blog as the summer progresses.

<< Previous Page ::


Info about progress on my Google Summer of Code 2009 project on Advanced Lighting & Shading in CrystalSpace.

< Previous |

November 2017
Sun Mon Tue Wed Thu Fri Sat
 << <   > >>
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30    



XML Feeds

What is RSS?

Who's Online?

  • Guest Users: 135

powered by