CrystalSpace

Public API Reference

csgeom/vector4.h

Go to the documentation of this file.
00001 /*
00002     Copyright (C) 1998,1999,2000 by Jorrit Tyberghein
00003     Largely rewritten by Ivan Avramovic <ivan@avramovic.com>
00004     Extended (and some methods removed) to 4 component by Marten Svanfeldt
00005     Templatized by Frank Richter
00006 
00007     This library is free software; you can redistribute it and/or
00008     modify it under the terms of the GNU Library General Public
00009     License as published by the Free Software Foundation; either
00010     version 2 of the License, or (at your option) any later version.
00011 
00012     This library is distributed in the hope that it will be useful,
00013     but WITHOUT ANY WARRANTY; without even the implied warranty of
00014     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015     Library General Public License for more details.
00016 
00017     You should have received a copy of the GNU Library General Public
00018     License along with this library; if not, write to the Free
00019     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
00020 */
00021 
00022 #ifndef __CS_VECTOR4_H__
00023 #define __CS_VECTOR4_H__
00024 
00032 #include "csextern.h"
00033 #include "csgeom/vector3.h"
00034 #include "csutil/csstring.h"
00035 
00039 template<typename T>
00040 class csVector4T
00041 {
00042 public:
00043 #if !defined(__STRICT_ANSI__) && !defined(SWIG)
00044   union
00045   {
00046     struct 
00047     {
00048 #endif
00050       T x;
00052       T y;
00054       T z;
00056       T w;
00057 #if !defined(__STRICT_ANSI__) && !defined(SWIG)
00058     };
00060     T m[4];
00061   };
00062 #endif
00063   /* Note: Since T is used in an union above it have to be an aggregate
00064    * type (C++ Std 8.5.1).
00065    * This implies that T cannot have custom constructor, base classes,
00066    * or virtual functions. This applies to all of Ts members recursivly.
00067    */
00068   
00073   csVector4T () {}
00074 
00080   csVector4T (const T& m) : x(m), y(m), z(m), w(m) {}
00081 
00083   csVector4T (const T& ix, const T& iy, const T& iz = T(0), 
00084     const T& iw = T(1))
00085         : x(ix), y(iy), z(iz), w(iw) {}
00086 
00088   csVector4T (const csVector4T& v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
00089 
00091   csVector4T (const csVector3 &v) : x(v.x), y(v.y), z(v.z), w(1.0f) {}
00092 
00094   template<typename T2>
00095   csVector4T& operator= (const csVector4T<T2>& other)
00096   {
00097     x = other.x;
00098     y = other.y;
00099     z = other.z;
00100     w = other.w;
00101     return *this;
00102   }
00103 
00105   csString Description() const
00106   { 
00107     csString str;
00108     str << x << "," << y << "," << z << "," << w;
00109     return str;
00110   }
00111     
00113   inline friend csVector4T operator+ (const csVector4T& v1, 
00114     const csVector4T& v2)
00115   { return csVector4T(v1.x+v2.x, v1.y+v2.y, v1.z+v2.z, v1.w+v2.w); }
00116 
00118   inline friend csVector4T operator- (const csVector4T& v1, 
00119     const csVector4T& v2)
00120   { return csVector4T(v1.x-v2.x, v1.y-v2.y, v1.z-v2.z, v1.w-v2.w); }
00121 
00122 
00124   inline friend float operator* (const csVector4T& v1, 
00125     const csVector4T& v2)
00126   { return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w; }
00127 
00129   inline friend csVector4T operator% (const csVector4T& v1, 
00130     const csVector4T& v2)
00131   {
00132     return csVector4T<T> (
00133       (v1.x*v2.y-v1.y*v2.x) + (v1.x*v2.z-v1.z*v2.x) + (v1.y*v2.z-v1.z*v2.y),
00134       (v1.z*v2.y-v1.y*v2.z) + (v1.y*v2.w-v1.w*v2.y) + (v1.z*v2.w-v1.w*v2.z),
00135       (v1.x*v2.z-v1.z*v2.x) + (v1.w*v2.x-v1.x*v2.w) + (v1.z*v2.w-v1.w*v2.z),
00136       (v1.y*v2.x-v1.x*v2.y) + (v1.w*v2.x-v1.x*v2.w) + (v1.w*v2.y-v1.y*v2.w) );
00137   }
00138 
00140   void Cross (const csVector4T & v1, const csVector4T & v2)
00141   {
00142     x = (v1.x*v2.y-v1.y*v2.x) + (v1.x*v2.z-v1.z*v2.x) + (v1.y*v2.z-v1.z*v2.y);
00143     y = (v1.z*v2.y-v1.y*v2.z) + (v1.y*v2.w-v1.w*v2.y) + (v1.z*v2.w-v1.w*v2.z);
00144     z = (v1.x*v2.z-v1.z*v2.x) + (v1.w*v2.x-v1.x*v2.w) + (v1.z*v2.w-v1.w*v2.z);
00145     w = (v1.y*v2.x-v1.x*v2.y) + (v1.w*v2.x-v1.x*v2.w) + (v1.w*v2.y-v1.y*v2.w);
00146   }
00147 
00149   inline friend csVector4T operator* (const csVector4T& v, T f)
00150   { return csVector4T(v.x*f, v.y*f, v.z*f, v.w*f); }
00151 
00153   inline friend csVector4T operator* (float f, const csVector4T& v)
00154   { return csVector4T(v.x*f, v.y*f, v.z*f, v.w*f); }
00155 
00157   inline friend csVector4T operator* (const csVector4T& v, int f)
00158   { T _f = f; return v * _f; }
00159 
00161   inline friend csVector4T operator* (int f, const csVector4T& v)
00162   { T _f = f; return v * _f; }
00163 
00165   inline friend csVector4T operator/ (const csVector4T& v, T f)
00166   { f = 1.0f/f; return csVector4T(v.x*f, v.y*f, v.z*f, v.w*f); }
00167 
00169   inline friend csVector4T operator/ (const csVector4T& v, int f)
00170   { T _f = f; return v / _f; }
00171 
00173   inline friend bool operator== (const csVector4T& v1, const csVector4T& v2)
00174   { return v1.x==v2.x && v1.y==v2.y && v1.z==v2.z && v1.w==v2.w; }
00175 
00177   inline friend bool operator!= (const csVector4T& v1, const csVector4T& v2)
00178   { return v1.x!=v2.x || v1.y!=v2.y || v1.z!=v2.z || v1.w!=v2.w; }
00179 
00181   inline friend csVector4T operator>> (const csVector4T& v1, const csVector4T& v2)
00182   { return v2*(v1*v2)/(v2*v2); }
00183 
00185   inline friend csVector4T operator<< (const csVector4T& v1, const csVector4T& v2)
00186   { return v1*(v1*v2)/(v1*v1); }
00187 
00189   inline friend bool operator< (const csVector4T& v, float f)
00190   { return ABS(v.x)<f && ABS(v.y)<f && ABS(v.z)<f && ABS(v.w)<f; }
00191 
00193   inline friend bool operator> (float f, const csVector4T& v)
00194   { return ABS(v.x)<f && ABS(v.y)<f && ABS(v.z)<f && ABS(v.w)<f; }
00195 
00197 #ifdef __STRICT_ANSI__
00198   inline float operator[] (size_t n) const 
00199   { return (n&2)?((n&1)?w:z):((n&1)?y:x); }
00200 #else
00201   inline float operator[] (size_t n) const { return m[n]; }
00202 #endif
00203 
00205 #ifdef __STRICT_ANSI__
00206   inline float & operator[] (size_t n) 
00207   { return (n&2)?((n&1)?w:z):((n&1)?y:x); }
00208 #else
00209   inline float & operator[] (size_t n) { return m[n]; }
00210 #endif
00211 
00213   inline csVector4T& operator+= (const csVector4T& v)
00214   {
00215     x += v.x;
00216     y += v.y;
00217     z += v.z;
00218     w += v.w;
00219 
00220     return *this;
00221   }
00222 
00224   inline csVector4T& operator-= (const csVector4T& v)
00225   {
00226     x -= v.x;
00227     y -= v.y;
00228     z -= v.z;
00229     w -= v.w;
00230 
00231     return *this;
00232   }
00233 
00235   inline csVector4T& operator*= (T f)
00236   { x *= f; y *= f; z *= f; w *= f; return *this; }
00237 
00239   inline csVector4T& operator/= (T f)
00240   { f = 1.0f / f; x *= f; y *= f; z *= f; w *= f; return *this; }
00241 
00243   inline csVector4T operator+ () const { return *this; }
00244 
00246   inline csVector4T operator- () const { return csVector4(-x,-y,-z, -w); }
00247 
00249   inline void Set (T sx, T sy, T sz, T sw)
00250   { x = sx; y = sy; z = sz; w = sw; }
00251 
00253   inline void Set (csVector4T const& v) { x = v.x; y = v.y; z = v.z; w = v.w; }
00254 
00256   inline void Set (T const* v) { x = v[0]; y = v[1]; z = v[2]; w = v[3]; }
00257 
00259   inline void Set (T v) { x = y = z = w = v; }
00260 
00262   inline void Get (T* v) { v[0] = x; v[1] = y; v[2] = z; v[3] = w; }
00263 
00265   T Norm () const { return sqrtf (x * x + y * y + z * z + w * w); }
00266 
00268   T SquaredNorm () const
00269   { return x * x + y * y + z * z + w * w; }
00270 
00276   csVector4T Unit () const { return (*this)/(this->Norm()); }
00277 
00279   inline static T Norm (const csVector4T& v) { return v.Norm(); }
00280 
00282   inline static csVector4T Unit (const csVector4T& v) { return v.Unit(); }
00283 
00285   void Normalize ()
00286   {
00287     T sqlen = x * x + y * y + z * z + w * w;
00288     if (sqlen < SMALL_EPSILON) return ;
00289   
00290     T invlen = csQisqrt (sqlen);
00291     *this *= invlen;
00292   }
00293 
00294 
00296   inline bool IsZero (T precision = SMALL_EPSILON) const
00297   { return (ABS(x) < precision) && (ABS(y) < precision)
00298             && (ABS(z) < precision) &&  (ABS(w) < precision);
00299   }
00300 };
00301 
00305 class csVector4 : public csVector4T<float>
00306 {
00307 public:
00312   csVector4 () {}
00313 
00319   csVector4 (const float& m) : csVector4T<float> (m) {}
00320 
00322   csVector4 (float ix, float iy, float iz = 0, float iw = 1)
00323         : csVector4T<float> (ix, iy, iz, iw) {}
00324 
00326   csVector4 (const csVector4& v) : csVector4T<float> (v) {}
00327 
00329   csVector4 (const csVector4T<float>& v) : csVector4T<float> (v) {}
00330 
00332   csVector4 (const csVector3 &v) : 
00333     csVector4T<float> (v.x, v.y, v.z, 1.0f) {}
00334 
00336   csVector4& operator= (const csVector4T<float>& other)
00337   {
00338     Set (other.x, other.y, other.z, other.w);
00339     return *this;
00340   }
00341 
00343   csVector4& operator= (const csVector3& other)
00344   {
00345     Set (other.x, other.y, other.z, 1.0f);
00346     return *this;
00347   }
00348 };
00349 
00352 #endif // __CS_VECTOR3_H__

Generated for Crystal Space 1.2.1 by doxygen 1.5.3