# CS::Math::Ode45 Class Reference

Embedded Runge-Kutta 4/5th order ODE solver for non-stiff ODEs. More...

`#include <csgeom/odesolver.h>`

List of all members.

## Static Public Member Functions

template<typename FuncType , typename ArgType >
static ArgType Step (FuncType &f, ArgType h, ArgType t0, ArgType y0, ArgType &yout)
Step system a single step with step length h.
template<typename FuncType , typename ArgType >
static float Step (FuncType &f, ArgType h, ArgType t0, csVector3 y0, csVector3 &yout)
Step system a single step with step length h.
template<typename FuncType , typename ArgType >
static ArgType Step (FuncType &f, ArgType h, ArgType t0, ArgType *y0, ArgType *yout, size_t size)
Step system a single step with step length h.

## Detailed Description

Embedded Runge-Kutta 4/5th order ODE solver for non-stiff ODEs.

Solve the system

y' = f(t, y)

where y (and y') are scalar or vector.

For reference, see: "Ordinary and partial differential equation routines in C, C++, Fortran, Java, Maple and MATLAB" by H.J. Lee & W.E. Schiesser

Definition at line 46 of file odesolver.h.

## Member Function Documentation

template<typename FuncType , typename ArgType >
 static ArgType CS::Math::Ode45::Step ( FuncType & f, ArgType h, ArgType t0, ArgType y0, ArgType & yout ) ` [inline, static]`

Step system a single step with step length h.

Parameters:
 f Function in y' = f(t, y) h Step length t0 Initial time y0 Initial y value yout Resulting y value
Returns:
Error estimate

Definition at line 241 of file odesolver.h.

template<typename FuncType , typename ArgType >
 static float CS::Math::Ode45::Step ( FuncType & f, ArgType h, ArgType t0, csVector3 y0, csVector3 & yout ) ` [inline, static]`

Step system a single step with step length h.

Parameters:
 f Function in y' = f(t, y) h Step length t0 Initial time y0 Initial y value yout Resulting y value
Returns:
Error estimate

Definition at line 177 of file odesolver.h.

template<typename FuncType , typename ArgType >
 static ArgType CS::Math::Ode45::Step ( FuncType & f, ArgType h, ArgType t0, ArgType * y0, ArgType * yout, size_t size ) ` [inline, static]`

Step system a single step with step length h.

Parameters:
 f Function in y' = f(t, y) h Step length t0 Initial time y0 Initial y value yout Resulting y value size Number of elements in y0 and yout
Returns:
Error estimate

Definition at line 62 of file odesolver.h.

The documentation for this class was generated from the following file:

Generated for Crystal Space 2.0 by doxygen 1.6.1